Chemical Proteomics-based Approach for Drug Target Discovery in Living Systems

吉林大学生命科学学院

E-mail: lianghaihu@jlu.edu.cn

1. Introduction drug target discovery

- 2. Identification of drug target in live cells by chemical proteomic approach
- 3. Tyrosine kinase/phosphatase substrate

1. Introduction drug target discovery

2. Identification of drug target in live cells by chemical proteomic approach

3. Tyrosine kinase/phosphatase substrate

Drug Discovery Pipeline

High-throughput Screening

The Nature of Drug Target

Who came first ? Drug or target

Bead-based Chemical Proteomics

(1) Prepare affinity column

Why living systems ?

Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease

Chem Biol. 2005; 12(12): 1259-1268 *Nat Biotechnol.* 2005; 23(10): 1303-1307 *Proc Natl Acad Sci USA.* 2007; 104(11): 4389-4394

Prof. Benjamin F. Cravatt, The Scripps Research Institute Prof. Matthew Bogyo, Stanford University

1. Introduction to drug target discovery

- 2. Identification of drug target in live cells by chemical proteomic approach
- 3. Tyrosine kinase/phosphatase substrate

Intracellular protein target in vivo

Identification of Drug Targets In Vitro and in Living Cells by Soluble-Nanopolymer-Based Proteomics Lianghai Hu, W. Andy Tao, et al. *Angew. Chem. Int. Ed.* 2011, 50(18):4133-4136 (Selected as "hot paper" by the editor)

Dendrimer-based Nanomedicine

1. Excellent solubility

- 2. High structural/chemical homogeneity
- **3.** Compact spherical shape
- 4. High branching
- 5. Controlled surface functionalities
- 6. Ability to permeate cells
- 7. Low cytotoxicity

In vivo characterization of protein targets

Hu L, Tao WA, et al. *Angew. Chem. Int. Ed.*, 50(18):4133-4136 (DOI:10.1002/anie.201006459, Selected as "Hot Paper" by the Editor)

Identification of the therapeutic protein targets

Choose Dendrimer Generation

MTX-DHFR System: A Case Study

DHFR: required for the *de novo* synthesis of purines, thymidylic acid and certain amino acids

Deficiency of DHFR is linked to *megaloblastic anemia* disease`

MTX: an antifolate drug in treatment of cancer by inhibiting the metabolism of folic acid

Capture of the endogenous DHFR *in vitro* from cell lysate using dendrimer-MTX

Identification of DHFR by MS/MS

In-gel digestion for MS analysis

32.44% coverage of the whole sequence of DHFR

VDMVWIVGGSSVYK LLPEYPGVLSDVQEEK NGDLPWPPLR LTEQPELANK EAMNHPGHLK TWFSIPEK SLDDALK MTTTSSVEGK

SILAC quantification for the differentiation of protein target and non-specific binding

Combine the heavy with light together and then on-bead digest for MS analysis

Classification of all the proteins identified by mass spectrometry

Known targets:
1. Dihydrofolate reductase
2. Deoxycytidine kinase
Potential targets:
1. Aspartate aminotransferase
2. Trifunctional purine biosynthetic protein adenosine-3
High abundant non-specific binding proteins:
1. Tubulin beta-2C chain
2. 40S ribosomal protein S3

- 3. Elongation factor
- 4. Heat shock protein

Flow cytometry for the deliver efficiency of the dendrimer reagent into living cells

0 h
1 h
2 h
3 h
4 h
5 h

Human B cell-DG 75

HeLa cell

106 106.6

Fluorescence microscopy imaging analysis

In vivo characterization of protein targets

Two known target DHFR and Deoxycytidine kinase can be successfully identified from living cells

MS/MS spectrum of a peptide—LLPEYPGVLSDVQEEK from DHFR which is identified *in vivo*

ITAM: Immunoreceptor Tyrosine-based Activation Motif

DQL

Υ

CD3_Y CD3δ CD3ε TCRζ₁ TCR₂ TCRζ₃ **lg**β (hB29)

DQV Y QP L RDRDDAQ-YSHL GGN Y SG L NQR NPD Y EP I RKGQRDL-NQL Y NE L NLGRREE-Y DV L DKR EGLYNEL QKDKMAEA YSEI GMK DGL Y QG L STATKDT-Y DA L HMQ ENL Y EG L NLDDCSM-YEDI SRG $lg\alpha$ (hMB-1) DHT Y EG L DI DQTAT-YEDI VTL DRV Y EE L NI YSAT- -Y SE L EDP FcεRI-β TG L STRNQET-KHE FcεRI-γ DGV ET Consensus

QP L KDREDDQ-

Υ

SH

QGN

Tandem phosphorylated tyrosine residues of ITAM will bind to the Src Homology 2 (SH2) domain of other receptor proteins associated with activation, survival, and differentiation

Catalog of SH2-containing proteins

Chromatin Remodeling

Small GTPase Signaling

Syk (spleen tyrosine kinase) as a model study

Kuil J, et al. Adv. Exp. Med. Bio., 2009, 611, 81-82

Recruitment of Syk to the diphosphorylated γ-ITAM of high affinity IgE receptor (FcεRI) results in activation of its kinase domain

Biphosphorylated ITAMs induce protein tyrosine phosphorylation in B cells

<u>J Immunol.</u> 1995 Nov 15;155(10):4596-603.

Affinity enrichment ability of ITAM peptide to Syk protein

DG 75 cells w and w/o stimulation of pervanadate

WB: 4G10

SILAC quantification for the differentiation of non-specific bindings and protein targets

Crk-like protein (coding a protein exhibiting the SH2 domain)	100
Tyrosine-protein kinase CSK	100
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1	100
Tyrosine-protein kinase SYK	100
Phosphatidylinositol 3-kinase regulatory subunit alpha	100
Tyrosine-protein kinase ZAP-70	100
Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1	100

Traditional competitive assay

Quantitative proteomics for competitive binding assay by mass spectrometry

Physiological condition & high throughput

Protein digest as the internal standard

Determination of the binding affinity of ITAM peptide to multiple proteins

Relative binding affinity can be got by fitting the target protein concentration with different amount of free ITAM competitor

1. Introduction to drug target discovery

2. Identification of drug target in live cells by chemical proteomic approach

3. Tyrosine kinase/phosphatase substrate

Tyrosine kinase/phosphatase substrate

Pi

PHOSPHATASE

PROTEIN

In vitro Kinase Substrate Screening

Fig. 1 Strategy for detections of on-chip phosphorylation. (A) Peptide immobilization method. (B) Outline of the detection of on-chip phosphorylation.

141 tyrosine-phosphorylated peptides from 63 proteins in 3 mg of whole human B cell DG75 cell extract

Confirmation of Syk kinase substrates

A) Centrosomal co-localization of GFP fused Syk with tubulin **B)** The subcellular location of GFP-Syk fusion protein under oxidation stress.

JAK2/PTP substrate

Both pY1007 and pY1008 can be dephosphorylated

Single dephosphorylation site was found short time reaction

Mass (m/z)

Does PTP recognize the phosphosite specifically ?

Summary

PTP can dephosphorylate both pY1007 and pY1008.

♦ PTP prefer to catalyze the 1008 site.

PY1008 enhance the dephosphorylation of pY1007 by binding to the PTP domain.

Investigation of PTP substrates by proteomics

PV treatment Phosphoprotein enrichment Vehicle ↓ PTP digest Quantitative analysis

PTP(-/-)

pY WB

Thanks for your attention !

