Protein Inference and Protein Quantification: Two Sides of the Same Coin

Zengyou He

School of Software Dalian University of Technology

CNCP 2012

Outline

Protein Identification and Quantification Methods Experimental Results Conclusion

Outline

1 Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- 3 Experimental Results

Conclusion

伺 ト イヨト イヨト

= nac

Protein Identification Protein Inference and Quantification

◆母 > < 目 > < 目 > < 日 > < 日 > < □ > <

Outline

1 Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- **3** Experimental Results

Conclusion

Protein Identification Protein Inference and Quantification

◆母 > < 目 > < 目 > < 日 > < 日 > < □ > <

Outline

1 Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- **3** Experimental Results

Conclusion

Protein Identification Protein Inference and Quantification

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Protein identification using mass spectrometry in shotgun proteomics

Protein Identification Protein Inference and Quantification

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Protein inference

Given peptide identification (y_1, y_2, \dots, y_4) , infer the presence states of the candidate proteins (z_1, z_2, \dots, z_5) .

Protein Identification Protein Inference and Quantification

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Why Protein Inference is Important?

- Proteins are biologically the most relevant outcome of a shotgun proteomics experiment.
- 2 The ability of accurately inferring proteins and assessing the inference results is critical to the success of proteomics studies.

Protein Identification Protein Inference and Quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why Protein Inference is Hard?

• We have to perform inference with limited information!

Protein Identification Protein Inference and Quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why Protein Inference is Hard?

• We have to perform inference with limited information!

Protein Identification Protein Inference and Quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why Protein Inference is Hard?

• We have to perform inference with uncertain information!

Protein Identification Protein Inference and Quantification

= 200

Why Protein Inference is Hard?

• We have to perform inference with uncertain information!

Protein Identification Protein Inference and Quantification

◆母 > < 目 > < 目 > < 日 > < 日 > < □ > <

Outline

1 Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- **3** Experimental Results

Conclusion

Protein Identification Protein Inference and Quantification

= nan

Protein Inference and Quantification

Protein identification and quantification have been considered as two individual and subsequent tasks for a long time: first select a subset of proteins that are truly present and then determine the abundances of these proteins.

Protein Identification Protein Inference and Quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Protein Inference and Quantification

- If one protein is not present, its abundance should be 0. Protein inference problem can be investigated from the perspective of protein quantification: present proteins are those proteins with non-zero abundances.
- We investigate the feasibility of solving protein inference problem with existing protein quantification methods.
- We choose spectral counting as the quantification approach for solving the protein inference problem.

Multiple Counting Equal Division Linear Programming Model **Converting Scores into Probabilities**

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Outline

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methods

• The input of the protein inference problem:

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methods

• The input of the protein inference problem:

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Methods

- Multiple Counting: shared peptides are counted multiple times so that the abundances of some proteins may be over-estimated.
- Equal Division: the abundance of each peptide is distributed equally to different proteins
- Linear Programming Model: the abundances of some proteins are set to be zero.

Multiple Counting Equal Division Linear Programming Model **Converting Scores into Probabilities**

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Outline

- Protein Identification
 - Protein Inference and Quantification

2 Methods

Multiple Counting

- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Multiple Counting

- The assumption: Shared peptides are used in the same way as the unique peptides and receive no special treatment.
- 2 The protein abundance is simply the sum of peptide abundance from both shared and unique peptides corresponding to protein z_k:

$$c_k = \sum_{(y_j, z_k) \in E_2} b_j \tag{1}$$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Multiple Counting

- The assumption: Shared peptides are used in the same way as the unique peptides and receive no special treatment.
- The protein abundance is simply the sum of peptide abundance from both shared and unique peptides corresponding to protein z_k:

$$c_k = \sum_{(y_j, z_k) \in E_2} b_j \tag{1}$$

 $c_1 = b_1 + b_2, c_2 = b_2$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Multiple Counting

- The assumption: Shared peptides are used in the same way as the unique peptides and receive no special treatment.
- The protein abundance is simply the sum of peptide abundance from both shared and unique peptides corresponding to protein z_k:

$$c_k = \sum_{(y_j, z_k) \in E_2} b_j \tag{1}$$

 $c_1 = b_1 + b_2, c_2 = b_2$

Multiple Counting Equal Division Linear Programming Model **Converting Scores into Probabilities**

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Outline

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Equal Division

- The assumption: Each peptide should be counted only once.
- The abundance of each shared peptide is equally distributed to its parent proteins:

$$c_k = \sum_{(y_j, z_k) \in E_2} rac{b_j}{q_j}$$

3 $c_1 = b_1 + \frac{2}{b_2}, c_2 = \frac{2}{b_2}$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Equal Division

- The assumption: Each peptide should be counted only once.
- The abundance of each shared peptide is equally distributed to its parent proteins:

$$c_k = \sum_{(y_j, z_k) \in E_2} \frac{b_j}{q_j}$$
(2)

3 $c_1 = b_1 + \frac{2}{b_2}, c_2 = \frac{2}{b_2}$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Equal Division

- The assumption: Each peptide should be counted only once.
- The abundance of each shared peptide is equally distributed to its parent proteins:

$$c_k = \sum_{(y_j, z_k) \in E_2} \frac{b_j}{q_j} \tag{2}$$

-

3
$$c_1 = b_1 + \frac{2}{b_2}, c_2 = \frac{2}{b_2}$$

Multiple Counting Equal Division Linear Programming Model **Converting Scores into Probabilities**

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Outline

- - Protein Identification
 - Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Linear Programming Model

- The assumption: For protein inference problem, some absent proteins should have zero abundances.
- 2 We first propose a new variable d_{jk} which can be interpreted as the abundance that protein z_k contributes to peptide y_i .
- For each identified peptide y_j, the peptide abundance can be computed as:

$$b_j = \sum_{\{k \mid (y_j, z_k) \in E_2\}} d_{jk}$$
(3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Linear Programming Model

- The assumption: For protein inference problem, some absent proteins should have zero abundances.
- 2 We first propose a new variable d_{jk} which can be interpreted as the abundance that protein z_k contributes to peptide y_j .
- So For each identified peptide y_j, the peptide abundance can be computed as:

$$b_j = \sum_{\{k \mid (y_j, z_k) \in E_2\}} d_{jk}$$
(3)

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Linear Programming Model

- The assumption: For protein inference problem, some absent proteins should have zero abundances.
- 2 We first propose a new variable d_{jk} which can be interpreted as the abundance that protein z_k contributes to peptide y_j .
- For each identified peptide y_j, the peptide abundance can be computed as:

$$b_j = \sum_{\{k \mid (y_j, z_k) \in E_2\}} d_{jk}$$
(3)

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Linear Programming Model

We propose a new linear programming model to set the abundances of some proteins to be zero:

$$\min_{D} \sum_{k=1}^{n} t_k \tag{4}$$

$$\forall j,k: d_{jk} \leq t_k \tag{5}$$

$$\forall j: b_j - \sum_{\{k \mid (y_j, z_k) \in E_2\}} d_{jk} = 0$$
 (6)

$$\forall j,k: d_{jk} \sim \begin{cases} = 0 & \text{if } (y_j, z_k) \notin E_2 \\ \geq 0 & \text{else} \end{cases}$$
(7)

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Linear Programming Model

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Linear Programming Model

For each protein z_k , the protein abundance is computed as:

$$c_k = \sum_{\{j | (y_j, z_k) \in E_2\}} d_{jk}$$
 (8)

Multiple Counting Equal Division Linear Programming Model **Converting Scores into Probabilities**

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Outline

- - Protein Identification
 - Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Converting Scores into Probabilities

• It is beneficial to convert the abundance into well-calibrated probability.

- 2 The problem of converting ranking scores into estimated probabilities has been widely investigated in different domains.
- We use the method proposed by Gao et al. [2] to fulfill this task.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Converting Scores into Probabilities

- It is beneficial to convert the abundance into well-calibrated probability.
- The problem of converting ranking scores into estimated probabilities has been widely investigated in different domains.
- We use the method proposed by Gao et al. [2] to fulfill this task.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Converting Scores into Probabilities

- It is beneficial to convert the abundance into well-calibrated probability.
- The problem of converting ranking scores into estimated probabilities has been widely investigated in different domains.
- We use the method proposed by Gao et al. [2] to fulfill this task.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Converting Scores into Probabilities

Given the protein abundance c_k , the probability p_k that protein z_k is present in the sample is estimated as follow:

$$Pr(z_{k} = 1|c_{k}) = \frac{Pr(c_{k}|z_{k} = 1)Pr(z_{k} = 1)}{Pr(c_{k}|z_{k} = 1)Pr(z_{k} = 1) + Pr(c_{k}|z_{k} = 0)Pr(z_{k} = 0)}$$
$$= \frac{1}{1 + \exp(-f_{k})}, \qquad (9)$$

Where

$$f_k = \log \frac{\Pr(c_k | z_k = 1) \Pr(z_k = 1)}{\Pr(c_k | z_k = 0) \Pr(z_k = 0)}.$$
 (10)

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Converting Scores into Probabilities

Assuming f_k has a Gaussian distribution with equal covariance matrices, the equation to estimate p_k becomes

$$p_k = \frac{1}{1 + \exp(Ac_k + B)} \tag{11}$$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

• Our task becomes to learn the parameters, A and B!

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Learning A and B

- $R = (r_1, r_2, \dots, r_n)$ is the presence indicator vector of n candidate proteins. Let $r_k = 1$ if protein z_k is present in the sample and 0 otherwise.
- Ounder the assumption that the existence of each protein is independent with other proteins, the probability of observing R given C = {c₁, c₂, · · · , c_n} is:

$$Pr(R|C) = \sum_{k=1}^{n} p_k^{r_k} (1 - p_k)^{1 - r_k}$$
(12)

The optimal parameter values should minimize the following negative log likelihood function:

$$LL(R|C) = \sum_{k=1}^{n} \left[(1 - r_k)(-Ac_k - B) + \log(1 + \exp(Ac_k + B)) \right]$$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Learning A and B

- $R = (r_1, r_2, \dots, r_n)$ is the presence indicator vector of n candidate proteins. Let $r_k = 1$ if protein z_k is present in the sample and 0 otherwise.
- Under the assumption that the existence of each protein is independent with other proteins, the probability of observing R given C = {c₁, c₂, · · · , c_n} is:

$$Pr(R|C) = \sum_{k=1}^{n} p_k^{r_k} (1 - p_k)^{1 - r_k}$$
(12)

The optimal parameter values should minimize the following negative log likelihood function:

$$LL(R|C) = \sum_{k=1}^{n} \left[(1 - r_k)(-Ac_k - B) + \log(1 + \exp(Ac_k + B)) \right]$$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

Learning A and B

- $R = (r_1, r_2, \dots, r_n)$ is the presence indicator vector of n candidate proteins. Let $r_k = 1$ if protein z_k is present in the sample and 0 otherwise.
- Under the assumption that the existence of each protein is independent with other proteins, the probability of observing R given C = {c₁, c₂, · · · , c_n} is:

$$Pr(R|C) = \sum_{k=1}^{n} p_k^{r_k} (1 - p_k)^{1 - r_k}$$
(12)

The optimal parameter values should minimize the following negative log likelihood function:

$$LL(R|C) = \sum_{k=1}^{n} \left[(1 - r_k)(-Ac_k - B) + \log(1 + \exp(Ac_k + B)) \right]$$

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- In protein inference problem, the indicator vector R is unknown. Thus, r_k is considered as hidden variables and we employ an EM algorithm to simultaneously estimate A, B and R.
- ② The EM algorithm utilizes an iterative procedure to estimate the parameter values $\theta = \{A, B\}$.
- The procedure includes two steps: set $r_k^{s+1} = E(r_k^s | C, \theta^s)$ (E-step) and compute $\theta^{s+1} = \arg \min_{\theta} LL(R^{s+1} | C)$ (M-step) where s is the iteration index.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- In protein inference problem, the indicator vector R is unknown. Thus, rk is considered as hidden variables and we employ an EM algorithm to simultaneously estimate A, B and R.
- **2** The EM algorithm utilizes an iterative procedure to estimate the parameter values $\theta = \{A, B\}$.
- **3** The procedure includes two steps: set $r_k^{s+1} = E(r_k^s | C, \theta^s)$ (E-step) and compute $\theta^{s+1} = \arg \min_{\theta} LL(R^{s+1} | C)$ (M-step) where s is the iteration index.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- In protein inference problem, the indicator vector R is unknown. Thus, rk is considered as hidden variables and we employ an EM algorithm to simultaneously estimate A, B and R.
- **2** The EM algorithm utilizes an iterative procedure to estimate the parameter values $\theta = \{A, B\}$.
- The procedure includes two steps: set $r_k^{s+1} = E(r_k^s | C, \theta^s)$ (E-step) and compute $\theta^{s+1} = \arg \min_{\theta} LL(R^{s+1} | C)$ (M-step) where s is the iteration index.

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- E-step: The unknown vector R is replaced by its expected value R^{s+1} under the current estimated parameter values θ^s . LL(R|C) is minimized by setting $r_k = 0$ if $Ac_k + B > 0$ or $r_k = 1$ if $Ac_k + B \le 0$.
- Of M step: Given the R^{s+1} values, a new parameter estimation θ^{s+1} is computed by minimizing LL(R|C). Since R^s = [r_k^s] is fixed, minimizing LL(R|C) with respect to A and B is a two-parameter optimization problem. This kind of problem can be solved using the model-trust algorithm [3].

Multiple Counting Equal Division Linear Programming Model Converting Scores into Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- E-step: The unknown vector R is replaced by its expected value R^{s+1} under the current estimated parameter values θ^s. LL(R|C) is minimized by setting r_k = 0 if Ac_k + B > 0 or r_k = 1 if Ac_k + B ≤ 0.
- O M step: Given the R^{s+1} values, a new parameter estimation θ^{s+1} is computed by minimizing LL(R|C). Since R^s = [r_k^s] is fixed, minimizing LL(R|C) with respect to A and B is a two-parameter optimization problem. This kind of problem can be solved using the model-trust algorithm [3].

Outline

Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- 3 Experimental Results

4 Conclusion

・同下 ・ヨト ・ヨト 三日

= 990

Experimental Results

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.

2 5 experimental methods:

Experimental Results

6 data sets:

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.

2 5 experimental methods:

 Our methods: multiple counting (MP); equal division (ED); linear programming (LP).
 Compared methods: MSBayesPro (MSB); ProteinProphet (PP).

Experimental Results

6 data sets:

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.

2 5 experimental methods:

 Our methods: multiple counting (MP); equal division (ED); linear programming (LP).
 Compared methods: MSBayesPro (MSB); ProteinProphet (PP).

Experimental Results

6 data sets:

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.

2 5 experimental methods:

- Our methods: multiple counting (MP); equal division (ED); linear programming (LP).
- Compared methods: MSBayesPro (MSB); ProteinProphet (PP).

Experimental Results

6 data sets:

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.

2 5 experimental methods:

- Our methods: multiple counting (MP); equal division (ED); linear programming (LP).
- Compared methods: MSBayesPro (MSB); ProteinProphet (PP).

Experimental Results

6 data sets:

- 3 data sets with known reference sets: Mixture of 18 Purified Proteins; Sigma49; Yeast.
- 3 data sets without reference sets: D. melanogaster Dataset (DME); HumanMD; HumanEKC.
- 2 5 experimental methods:
 - Our methods: multiple counting (MP); equal division (ED); linear programming (LP).
 - Compared methods: MSBayesPro (MSB); ProteinProphet (PP).

Identification performance comparison (1)

We evaluate the performance using a curve that plots the number of TPs as a function of q-value.

- An identified protein is labeled as a TP if it is present in the protein reference set or target protein sequence database, and as a FP otherwise.
- ⁽²⁾ Given a certain probability threshold t, suppose there are T_t TPs and F_t FPs, FDR is estimated as

$$FDR_t = \frac{F_t}{(F_t + T_t)} \tag{14}$$

The corresponding q-value is defined as the minimal FDR that a protein is reported:

$$q_t = \min_{t' \le t} FDR_{t'} \tag{15}$$

伺 ト イヨ ト イヨト

Identification performance comparison (1)

We evaluate the performance using a curve that plots the number of TPs as a function of q-value.

- An identified protein is labeled as a TP if it is present in the protein reference set or target protein sequence database, and as a FP otherwise.
- Given a certain probability threshold t, suppose there are T_t TPs and F_t FPs, FDR is estimated as

$$FDR_t = \frac{F_t}{(F_t + T_t)}$$
(14)

The corresponding q-value is defined as the minimal FDR that a protein is reported:

$$q_t = \min_{t' \le t} FDR_{t'} \tag{15}$$

伺 ト イヨト イヨト

Identification performance comparison (1)

We evaluate the performance using a curve that plots the number of TPs as a function of q-value.

- An identified protein is labeled as a TP if it is present in the protein reference set or target protein sequence database, and as a FP otherwise.
- 2 Given a certain probability threshold t, suppose there are T_t TPs and F_t FPs, FDR is estimated as

$$FDR_t = \frac{F_t}{(F_t + T_t)} \tag{14}$$

The corresponding *q*-value is defined as the minimal FDR that a protein is reported:

$$q_t = \min_{t' \le t} FDR_{t'} \tag{15}$$

Identification performance comparison (1)

We evaluate the performance using a curve that plots the number of TPs as a function of q-value.

- An identified protein is labeled as a TP if it is present in the protein reference set or target protein sequence database, and as a FP otherwise.
- 2 Given a certain probability threshold t, suppose there are T_t TPs and F_t FPs, FDR is estimated as

$$FDR_t = \frac{F_t}{(F_t + T_t)} \tag{14}$$

The corresponding q-value is defined as the minimal FDR that a protein is reported:

$$q_t = \min_{t' \le t} FDR_{t'} \tag{15}$$

Identification performance comparison (1)

Mixture of 18 Purified Proteins and Sigma49:

イロト イヨト イヨト イヨト

포네크

Identification performance comparison (1)

Yeast and DME:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

르

Identification performance comparison (1)

Two human data sets:

イロト イヨト イヨト イヨト

포네크

Identification performance comparison (2)

- In the calculation of protein abundance, we generalize the number of MS/MS spectra to the sum of PSM probabilities.
- To show the fact of this extension, we compare the identification performance between the generalized spectral counting methods (MP, ED, LP) and the traditional spectral counting methods (NMP, NED, NLP).
- The experimental results indicate that: using the sum of PSM probabilities actually performs better than using the number of PSMs.

Identification performance comparison (2)

- In the calculation of protein abundance, we generalize the number of MS/MS spectra to the sum of PSM probabilities.
- To show the fact of this extension, we compare the identification performance between the generalized spectral counting methods (MP, ED, LP) and the traditional spectral counting methods (NMP, NED, NLP).
- The experimental results indicate that: using the sum of PSM probabilities actually performs better than using the number of PSMs.

Identification performance comparison (2)

- In the calculation of protein abundance, we generalize the number of MS/MS spectra to the sum of PSM probabilities.
- To show the fact of this extension, we compare the identification performance between the generalized spectral counting methods (MP, ED, LP) and the traditional spectral counting methods (NMP, NED, NLP).
- The experimental results indicate that: using the sum of PSM probabilities actually performs better than using the number of PSMs.

Identification performance comparison (2)

Mixture of 18 Purified Proteins and Sigma49:

Zengyou He

zyhe@dlut.edu.cn

-

Identification performance comparison (2)

Yeast and DME:

Zengyou He

ヘロン 人間と 人間と 人間と

-2

= 200

Identification performance comparison (2)

Two human data sets:

Zengyou He

zyhe@dlut.edu.cn

Comparison of the score distribution between normalized score and probability estimation

- We use an EM algorithm to convert the abundance score into a well-calibrated probability.
- We compare the distribution of normalized score (NS) and estimated probability (EP).
- The experimental results show that the probability estimation has a more uniform distribution than normalized protein score.

(日) (周) (日) (日) (日)

Comparison of the score distribution between normalized score and probability estimation

- We use an EM algorithm to convert the abundance score into a well-calibrated probability.
- We compare the distribution of normalized score (NS) and estimated probability (EP).
- The experimental results show that the probability estimation has a more uniform distribution than normalized protein score.

Comparison of the score distribution between normalized score and probability estimation

- We use an EM algorithm to convert the abundance score into a well-calibrated probability.
- We compare the distribution of normalized score (NS) and estimated probability (EP).
- The experimental results show that the probability estimation has a more uniform distribution than normalized protein score.

Comparison of the score distribution

Mixture of 18 Purified Proteins, Sigma49 and Yeast

Comparison of the score distribution

DME, HumanMD and HumanEKC

Outline

Protein Identification and Quantification

- Protein Identification
- Protein Inference and Quantification

2 Methods

- Multiple Counting
- Equal Division
- Linear Programming Model
- Converting Scores into Probabilities
- 3 Experimental Results

4 Conclusion

<回と < 目と < 目と 三

= 990

Conclusion

- To our knowledge, our method is the first attempt to use protein quantification methods for protein inference.
- ② The experimental results show that such a new angle enables us to obtain better identification performance even with some very simple quantification approaches available in the literature.
- In the future work, we plan to try more quantification methods to check if we can further improve the identification performance.

Conclusion

- To our knowledge, our method is the first attempt to use protein quantification methods for protein inference.
- The experimental results show that such a new angle enables us to obtain better identification performance even with some very simple quantification approaches available in the literature.
- In the future work, we plan to try more quantification methods to check if we can further improve the identification performance.

Conclusion

- To our knowledge, our method is the first attempt to use protein quantification methods for protein inference.
- 2 The experimental results show that such a new angle enables us to obtain better identification performance even with some very simple quantification approaches available in the literature.
- In the future work, we plan to try more quantification methods to check if we can further improve the identification performance.

Reference

- A. I. Nesvizhskii, O. Vitek, and R. Aebersold, "Analysis and validation of proteomic data generated by tandem mass spectrometry," *Nature Methods*, vol. 4, no. 10, pp. 787–797, 2007.
- J. Gao and P.-N. Tan, "Converting output scores from outlier detection algorithms into probability estimates," in *IEEE International Conference on Data Mining*, Hong Kong, China, December 2006, pp. 212–221.
- J. C. Platt, "Probabilistic outputs for support vector machines and comparison to regularized likelihood methods," in *Advances in Large Margin Classifiers*. MIT Press, 2000, pp. 61–74.

ロト (日) (日) (日) (日) (日) (日)