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Protein identification using mass spectrometry in shotgun
proteomics
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Protein inference

Given peptide identification (y1, y2, · · · , y4), infer the presence
states of the candidate proteins (z1, z2, · · · , z5).
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Why Protein Inference is Important?

1 Proteins are biologically the most relevant outcome of a
shotgun proteomics experiment.

2 The ability of accurately inferring proteins and assessing the
inference results is critical to the success of proteomics studies.
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Why Protein Inference is Hard?

11

Peptide 1
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Peptide 4
Peptide 5

Peptide 6

Some unknown protein

We have to perform inference with limited information!
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Why Protein Inference is Hard?

12We have to perform inference with uncertain information!
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Protein Inference and Quantification

Protein identification and quantification have been considered as
two individual and subsequent tasks for a long time: first select a
subset of proteins that are truly present and then determine the
abundances of these proteins.
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Protein Inference and Quantification

If one protein is not present, its abundance should be 0.
Protein inference problem can be investigated from the
perspective of protein quantification: present proteins are
those proteins with non-zero abundances.

We investigate the feasibility of solving protein inference
problem with existing protein quantification methods.

We choose spectral counting as the quantification approach
for solving the protein inference problem.
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Methods

The input of the protein inference problem:
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Methods

1 Multiple Counting: shared peptides are counted multiple times
so that the abundances of some proteins may be
over-estimated.

2 Equal Division: the abundance of each peptide is distributed
equally to different proteins

3 Linear Programming Model: the abundances of some proteins
are set to be zero.
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Multiple Counting

1 The assumption: Shared peptides are used in the same way as
the unique peptides and receive no special treatment.

2 The protein abundance is simply the sum of peptide
abundance from both shared and unique peptides
corresponding to protein zk :

ck =
∑

(yj ,zk )∈E2

bj (1)

3 c1 = b1 + b2, c2 = b2
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Equal Division

1 The assumption: Each peptide should be counted only once.
2 The abundance of each shared peptide is equally distributed

to its parent proteins:
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Linear Programming Model

1 The assumption: For protein inference problem, some absent
proteins should have zero abundances.

2 We first propose a new variable djk which can be interpreted
as the abundance that protein zk contributes to peptide yj .

3 For each identified peptide yj , the peptide abundance can be
computed as:

bj =
∑

{k|(yj ,zk )∈E2}

djk (3)
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Linear Programming Model

We propose a new linear programming model to set the
abundances of some proteins to be zero:

min
D

n∑
k=1

tk (4)

∀j , k : djk ≤ tk (5)

∀j : bj −
∑

{k|(yj ,zk )∈E2}

djk = 0 (6)

∀j , k : djk ∼

{
= 0 if (yj , zk) /∈ E2

≥ 0 else
. (7)
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Linear Programming Model

For each protein zk , the protein abundance is computed as:

ck =
∑

{j |(yj ,zk )∈E2}

djk (8)
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Converting Scores into Probabilities

1 It is beneficial to convert the abundance into well-calibrated
probability.

2 The problem of converting ranking scores into estimated
probabilities has been widely investigated in different domains.

3 We use the method proposed by Gao et al. [2] to fulfill this
task.
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Converting Scores into Probabilities

Given the protein abundance ck , the probability pk that protein zk

is present in the sample is estimated as follow:

Pr(zk = 1|ck)

=
Pr(ck |zk = 1)Pr(zk = 1)

Pr(ck |zk = 1)Pr(zk = 1) + Pr(ck |zk = 0)Pr(zk = 0)

=
1

1 + exp(−fk)
, (9)

Where

fk = log
Pr(ck |zk = 1)Pr(zk = 1)

Pr(ck |zk = 0)Pr(zk = 0)
. (10)
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Converting Scores into Probabilities

Assuming fk has a Gaussian distribution with equal covariance
matrices, the equation to estimate pk becomes

pk =
1

1 + exp(Ack + B)
(11)

Our task becomes to learn the parameters, A and B!
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Learning A and B

1 R = (r1, r2, · · · , rn) is the presence indicator vector of n
candidate proteins. Let rk = 1 if protein zk is present in the
sample and 0 otherwise.

2 Under the assumption that the existence of each protein is
independent with other proteins, the probability of observing
R given C = {c1, c2, · · · , cn} is:

Pr(R|C ) =
n∑

k=1

prk
k (1− pk)1−rk (12)

3 The optimal parameter values should minimize the following
negative log likelihood function:

LL(R|C ) =
n∑

k=1

[(1− rk)(−Ack − B) + log(1 + exp(Ack + B))]

(13)Zengyou He zyhe@dlut.edu.cn
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EM algorithm

1 In protein inference problem, the indicator vector R is
unknown. Thus, rk is considered as hidden variables and we
employ an EM algorithm to simultaneously estimate A, B and
R.

2 The EM algorithm utilizes an iterative procedure to estimate
the parameter values θ = {A,B}.

3 The procedure includes two steps: set r s+1
k = E (r s

k |C , θs)
(E-step) and compute θs+1 = arg minθ LL(Rs+1|C ) (M-step)
where s is the iteration index.
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EM algorithm

1 E-step: The unknown vector R is replaced by its expected
value Rs+1 under the current estimated parameter values θs .
LL(R|C ) is minimized by setting rk = 0 if Ack + B > 0 or
rk = 1 if Ack + B ≤ 0.

2 M step: Given the Rs+1 values, a new parameter estimation
θs+1 is computed by minimizing LL(R|C ). Since Rs = [r s

k ] is
fixed, minimizing LL(R|C ) with respect to A and B is a
two-parameter optimization problem. This kind of problem
can be solved using the model-trust algorithm [3].
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Experimental Results

1 6 data sets:

3 data sets with known reference sets: Mixture of 18 Purified
Proteins; Sigma49; Yeast.
3 data sets without reference sets: D. melanogaster Dataset
(DME); HumanMD; HumanEKC.

2 5 experimental methods:

Our methods: multiple counting (MP); equal division (ED);
linear programming (LP).
Compared methods: MSBayesPro (MSB); ProteinProphet
(PP).
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Compared methods: MSBayesPro (MSB); ProteinProphet
(PP).

Zengyou He zyhe@dlut.edu.cn



Outline
Protein Identification and Quantification

Methods
Experimental Results

Conclusion

Identification performance comparison (1)

We evaluate the performance using a curve that plots the number
of TPs as a function of q-value.

1 An identified protein is labeled as a TP if it is present in the
protein reference set or target protein sequence database, and
as a FP otherwise.

2 Given a certain probability threshold t, suppose there are Tt

TPs and Ft FPs, FDR is estimated as

FDRt =
Ft

(Ft + Tt)
(14)

3 The corresponding q-value is defined as the minimal FDR that
a protein is reported:

qt = min
t′≤t

FDRt′ (15)
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Mixture of 18 Purified Proteins and Sigma49:
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Yeast and DME:
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Two human data sets:
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Identification performance comparison (2)

In the calculation of protein abundance, we generalize the
number of MS/MS spectra to the sum of PSM probabilities.

To show the fact of this extension, we compare the
identification performance between the generalized spectral
counting methods (MP, ED, LP) and the traditional spectral
counting methods (NMP, NED, NLP).

The experimental results indicate that: using the sum of PSM
probabilities actually performs better than using the number
of PSMs.
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Mixture of 18 Purified Proteins and Sigma49:
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Yeast and DME:
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Two human data sets:
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Comparison of the score distribution between normalized
score and probability estimation

We use an EM algorithm to convert the abundance score into
a well-calibrated probability.

We compare the distribution of normalized score (NS) and
estimated probability (EP).

The experimental results show that the probability estimation
has a more uniform distribution than normalized protein score.
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DME, HumanMD and HumanEKC
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Conclusion

1 To our knowledge, our method is the first attempt to use
protein quantification methods for protein inference.

2 The experimental results show that such a new angle enables
us to obtain better identification performance even with some
very simple quantification approaches available in the
literature.

3 In the future work, we plan to try more quantification
methods to check if we can further improve the identification
performance.
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