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Introduction

Background of Mass Spectrometry Data Analysis

We like to know:
what proteins/peptides are in a sample?
What are their expression levels?

Issues in the analysis:
Noise:

Many sources: chemical, electrical, instrumental
Physics not completely understood
Low abundance signal coexists

Measurement range:
Is it enough to record all the information?
Dynamic properties of samples:
Do we obtain the data at the right time?
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Introduction

Motivation of Protein Identification

MS data describes information directly at the peptide level.
We need to identify the corresponding proteins to better
understand the cellular functions.
Information at the protein level is probably more robust.
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Introduction

Common Methods for Protein Identification

1. Peptide Sequencing Method (Using MS/MS data).
Pros: More accurate
Cons: Lower coverage (especially peptides with low
intensity values)

2. Peptide Mass Fingerprinting (Using single-stage MS Data)
Pros: Higher coverage
Cons: Less accurate and cannot handle protein mixtures

Can we remove the limitations of PMF ?

Our approach: We formulate the identification of protein
mixtures as an optimization problem.
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Method

PMF for Single Protein Identification

PMF method for single protein identification consists of the
following steps:

(1) Protein purification:
The 2D gel-based separation produces purified protein
samples.

(2) Protein digestion: e.g. trypsin digestion.

(3) MS data acquisition and peak detection:
record the masses of resulting peptides.

(4) PMF scoring:
match the MS spectrum with respect to the protein
database and report the best ones.
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Method

PMF for Single Protein Identification

Find a single protein that maximizes the scoring function:

X̂ = arg max
Xi∈D

S(L)(Z, Xi), (1)

Z = (z1, z2, ...zl): Experimental peaks

D = (X1, X2, ...Xg): Protein database

S(L)(Z, Xi, σ): Scoring function,
σ: mass tolerance threshold.
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Method

PMF for Protein Mixture Identification

Replace single protein Xi with a set of proteins Y:

Ŷ = arg max
Y⊆D

S(M)(Z, Y), (2)

We have the same input Z

Our objective is to find a set of proteins Ŷ that best
”explains” Z
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Method

Existing Approaches
S(L)(Z, Xuj)
Directly apply the single protein identification method to
protein mixtures.

The subtraction strategy:
(1) First identify a protein with the highest score;
(2) Remove the peaks associated with this protein from the
input data
(3) Go back to step (1) until the score is lower than a
predefined threshold.

Suppose the peak subset Z0 is empty. At each step
j(1 ≤ j ≤ k), calculate the score as:

S(L)(Z−
j−1⋃
t=0

Zt, Xuj). (3)
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Method

Choice of Scoring Function

(1) Virtual single protein approach.
S(M)(Z, Y) = S(L)(Z, Ṽ).
Ṽ: Use a set of proteins to represent a virtual single protein.

(2) Peak partition approach.
S(M)(Z, Y) = ∑k

j=1 S(L)(Zj, Xuj).
Partitioning Z into Zj is tricky.
The subtraction strategy: greedy partition
Random matching is the major concern

We choose the virtual single protein approach here.
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Method

Scoring Function for Single Protein Identification
The probability that a protein Xi has ri randomly matched
peaks in Z (assuming binomial distribution):

Pr(|MZ(Xi)| = ri) = Cri
l pri

i (1− pi)l−ri (4)

Score: S(L)(Z, Xi) = − ln Cri
l − ri ln pi − (l− ri) ln(1− pi) (5)

MZ(Xi): subset of Z whose peaks match protein Xi

l: the number of observed peaks in Z

ri: number of peptides in protein Xi.

pi: the probability for at least one match

pi = 1− (1− 2σ/∆)ni , (6)

∆: mass range; σ: mass tolerance.
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Method

Scoring Function for Protein Mixture Identification

S(M)(Z, Y) = − ln CrY
l − rY ln pY − (l− rY) ln(1− pY) (7)

Y consists of k proteins Xu1 , Xu2 , ..., Xuk

rY = |⋃k
j=1 MZ(Xuj)|

and
pY = 1− (1− 2σ/∆)∑k

j=1 nuj .
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Method

Maximization of Scoring Function

Two cases:

The number of ground-truth proteins k is known.
Losak Algorithm

The number of ground-truth proteins k is unknown.
Losau Algorithm
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Method

Losak Algorithm

A LOcal Search Algorithm with Known k.

(1) Randomly select k proteins into Y as “target” proteins

(2.1) In the iteration process, swap each “non-target”
protein with the k target proteins and re-evaluate the
scoring function.

(2.2) keep those “target” proteins that achieve the best
scoring values and proceed to the next protein.
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Method

Losak Algorithm-Detail
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Method

Losau Algorithm

A LOcal Search Algorithm with Unknown k.

(1) Initialize with 2 proteins.
(2) Iterate with swap, insert and delete operation. (Occam’s
razor principle,Penalizing insert operation using ω)
(3) Prune the protein list
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Method
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Method

Filtering Procedure in the Losau Algorithm

Idea: if Xuj is the ground-truth protein, then the chance that
other proteins in the database has a better score than Xuj on
MZ(Xuj) is very low.
We use the number of “winning proteins” to measure the rank
uncertainty and θ as the threshold to remove false positives.
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Experiments

Evaluation Criteria and PMF Algorithms

We use standard performance metrics in information retrieval,
including precision, recall, and F1−measure.

nTP: the number of true positives.
nFP: the number of false positives.
nP: the number of all ground-truth proteins.
precision = nTP/(nTP + nFP)
recall = nTP/nP

F1−measure = 2·precision·recall
precision+recall
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Experiments

Algorthims

In performance comparison, we use the following algorithms:

SPA: single protein identification algorithm.
Subtraction algorithm
Losak algorithm
Losau algorithm
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Experiments

Real Data

Results on Real Data
Here we use a mixture of 49 standard human proteins in the
ABRF sPRG2006 study.

Table: Identification performance and running time of different
algorithms on the real MS data. Here the number of reported proteins
for SPA, Subtraction, and Losak is 49, i.e. the number of ground-truth
proteins.

Algorithms Precision Recall F1-Measure Running Time(s)
SPA 24% 24% 24% 7.9

Subtraction 43% 43% 43% 24.0
Losak 67% 67% 67% 21.2
Losau 61% 71% 66% 19.6
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Conclusion

Conclusion and Future Work

Optimization-based PMF methods have great potential for
protein mixture identification, especially in the analysis of
low-abundance proteins, whose peptide digestion results
are less likely to be covered by the peptide sequencing
method.

We like to combine MS and MS/MS data to further
improve protein identification accuracy and robustness.
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Conclusion

Thank you !
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