基于相关谱图对的非限制性修饰检测 Unrestrictive Modification Detection Based on Related Spectral Pairs

付岩 中国科学院计算技术研究所 2010.11.11

Joint work with Ding Ye, Liyun Xiu, and other pFind group members

Complexity of life

- # protein isoforms >> # genes
- This is in large part due to posttranslational modifications of proteins that provide covalent alterations to protein backbones and side chains that increase proteome complexities.

MS-based proteomic analysis of PTM

- Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Binz PA, Ou K, Sanchez JC, Bairoch A, Williams KL et al: High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 1999, 289(3):645-657.
- Mann M, Jensen ON: Proteomic analysis of post-translational modifications. *Nat Biotechnol 2003*, 21(3):255-261.
- Jensen ON (2004) Modification-specific proteomics: Characterization of posttranslational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41.
- Witze ES, Old WM, Resing KA, Ahn NG: Mapping protein post-translational modifications with mass spectrometry. *Nat Methods* 2007, 4(10):798-806.

(Open) problems of modification identification via mass spectrometry

- Site identification of interested modifications (e.g., phosp. acyl. methy. ect)
- Effects of modifications on peptide fragmentation (e.g., neutral loss, suppression)
- Unambiguous site assignment (e.g., phosp.)
- Search speed(e.g, when many variable modifications are specified)
- False discovery rate control of modification identifications

(Open) problems of modification identification via mass spectrometry (cont.)

- Recognition of signals of interested modifications (e.g., phosphorylation spectra)
- Discrimination between in vivo and in vitro modifications (e.g., deamidation)
- Identification of complex modification structures (e.g., glycan, ubiquitin)
- Combinatorics of modifications (e.g., histones)
- Discovery of unanticipated/novel modifications

Computational difficulties of modification detection

- Restrictive approaches
 - Combinatory explosion (hundreds known, a few allowed)
 - Guessing of modification types
 - Inability to find novel modifications
- Unrestrictive approaches
 - Low search speed
 - Increasing random matches
 - Sensitive to spectrum quality
- Spectral identification rate is 10-30% in current proteomics

Restrictive approach pFind: sequence DB search engine Fu Y, et al. Bioinformatics 2004; Wang L, et al. RCM 2007

- Scoring function: kernel spectral dot product
- Significance evaluation: E-value, FDR
- Variable modification search
 - Enumerate all possible modification forms

PO₃ PO₃ PO₃ PO₃ PO₃ PO₃ EMSVPSCQYILSANTR

Five potential modification sites, 32 candidate peptides

• Database indexing and optimized search flow

ABRF-iPRG2010

Sample: 7.5x10e7 human K562 human chronic myelogenous leukemia cells, 4mg lysate

Protocol: Villen, J, and Gygi, SP, Nat Prot, 2208, 3, 1630-1638.

Lysis: 8M urea, 75mM NaCl, 50 mM Tris pH 8.2, phosphatase inhibitors

SCX: PolyLC - Polysulfoethyl A 9.4 mm X 200mm, elute: 0-105mM KCl , 30% Acn .

IMAC: Sigma - PhosSelect Fe IMAC beads, bind: 40% Acn, 0.1% formic acid, elute: 500 mM K₂HPO₄ pH 7

MS/MS: Thermo Fisher Orbitrap XL, high-res MS1 scans in the Orbitrap (60k), Top-8 fragmented in LTQ, exclude +1 and precursors w/ unassigned charges, 20s exclusion time, precursor mass error +/- 10 ppm

Proteome Informatics Research Group

Results

Ma=Mascot, Ms=MsInspect, Mu=Multiple, Mu*=Multiple + Spec Lib, Om=OMSSA, Pf=pFind, Pv=Pview, Sc=Scaffold, Se=SEQUEST, Sm=Spectrum Mill, Xt=X!Tandem As=Ascore, Ih=In-house, In=InsPecT, Mq=MaxQuant, Nn=NNScore, Ph=Phosphinator, PI=Phosphate Localization Score, Ps=PhosphoScore, Sm=Spectrum Mill

Identification of Core Fucosylated Glycoproteins using pFind search engine Jia W, Lu Z, Fu Y, et al. Molecular & Cellular Proteomics 2009

6134	Identified	Identified	Identification
spectra	peptide	spectra	rate
pFind	115	1973	32.16%
SEQUEST		1211	21.270/
SEQUESI	02	1311	21.37%
Mascot	98	1813	29.56%

Unrestrictive approaches

- Divide and conquer
 - Divide modifications in MS/MS into different categories
 - Use different strategies for different categories of modifications
 - Goal: maximize modification detections with minimal effort

Categorization of modifications in MS/MS

Information from LC-MS/MS

Unrestrictive approaches

pMatch tool

Open spectral library search

pMatch: Open spectral library search Ye D, Fu Y, et al. Bioinformatics 2010

- Spectral library search
 - Search against identified experimental spectra rather than peptide sequences
- Open search mode
 - Match unmodified spectra to modified spectra
- Assumption
 - Modified/unmodified peptide pairs

Open search

- Precursor mass tolerance:
 - Conventional search mode: ± 3 Da
 - Open search mode: \pm 300 Da or more

Experimental Workflow

Query Spectra

Library Construction

Decoy Spectra for FDR control

- "pseudo-reversed" peptide sequence
 - ABCDEFK -> FEDCBAK
- Peak m/z values are shifted

Scoring

- Peak hits are determined considering **mass shifts** caused by unanticipated modifications
- Match score is calculated from peak hits
- Two sub-scores:
 - How similar are the two spectra?
 - SDP_Score : Spectral Dot-Product Score
 - How does one match stand out from the rest candidates?
 - P_Score : Probability-based Score

SDP_Score

• SDP_Score is the cosine of the angle between the two spectral vectors

I_Q : Intensity of the Query peakI_L : Intensity of the Library peak

ISB-18mix dataset (Klimek, J, et al. JPR 2008)

Detected mass shifts

Phosphorylation

Results on five Datasets

Dataset Total		Identified Spectra		Identification Rate	Abundant Modifications (Da)	
Dataset	MS/MS	pFind	pMatch	Raised	Adundant Modifications (Da)	
ISB-18mix	40,376	12,032	+8,025	29.80% → 49.68 %	 -116 (A disulfide bridge); -18 (Dehydration); -17 (Ammonia loss); -16 (Ammonia loss & Deamidation); 1 (Deamidation); 2 (Two deamidations); 16 (Oxidation); 22 (Sodium); 23 (Sodium & Deamidation); 26 (Acetaldehyde +26); 38 (Calcium); 39 (Calcium & Deamidation); 152 (CarbamidomethylDDT); 153 (CarbamidomethylDDT & Deamidatoin); 174 (CarbamidomethylDDT & Sodium) 	
TAP-PSD95	36,387	3,575	+1,882	9.82% → 15.00 %	 -18 (Dehydration); -17 (Ammonia loss); 1 (Deamidation); 14 (Methylation); 16 (Oxidation); 22 (Sodium); 26 (Acetaldehyde +26); 28 (Formylation); 32 (Dioxidation); 42 (Acetylation); 54 (Acetaldehyde +26 & Formylation); 70 (Formylation & Acetylation); 80 (Phosphorylation) 	
HUPO-14	15,221	7,281	+2,418	47.84% → 63.72 %	-17 (Ammonia loss); 1 (Deamidation); 12 (Formaldehyde induced modification); 14 (Methylation); 26 (Acetaldehyde +26); 42 (Acetylation)	
Haas-Data	56,599	9,172	+2,558	16.21% → 20.74 %	-17 (Ammonia loss); 1 (Deamidation); 43 (Carbamylation); 171 (Carbamylation & Lysine added)	
Gygi-Qstar	46,195	9,255	+4,357	20.03% → 29.40 %	1 (Deamidation); 12 (Formaldehyde induced modification); 22 (Sodium); 28 (Formylation)	

pCluster tool

Fast detection of abundant modifications by precursor clustering

pCluster: fast detection of abundant modifications by precursor clustering Fu Y, et al. BMC Bioinformatics 2009; Fu Y, et al. Submitted 2010

Every pair of spectra is represented by a 2-d vector, called a *delta mass and time vector*

$$\Delta = \left\langle \Delta m, \Delta t \right\rangle$$

Modification-induced delta vector distributions

Two-dimensional Gaussian mixture distribution model

$$f(\Delta) = \alpha_{Rand} f_{Rand} (\Delta) + \sum_{k=1}^{n} \alpha_{Mod,k} f_{Mod,k} (\Delta)$$
$$\alpha_{Rand} + \sum_{k=1}^{n} \alpha_{Mod,k} = 1$$

where f_{Rand} represents the *pdf* of the random distribution in a mass interval, represents the *pdf* of the *k*-th $f_{Mod,k}$ (ix) tion-induced distribution, *n* is the total number of modifications in this mass interval, and α_{Rand} and $\alpha_{Mod,k}$ are mixing coefficients.

Results

• ISB standard protein mix data

- Eighteen purified proteins
- Digestion by trypsin
- Mixture 3 on an LTQ-FT mass spectrometer
- The third run selected
- 4,085 MS/MS scans

Klimek, J., et al. (2008) The standard protein mix database: a diverse data set to assist in the production of improved Peptide and protein identification software tools. *J Proteome Res* 7, 96-103

Detected putative modifications

Mono-modifi	cations				
Δm (Da)	Δt (min)	D-score	Pairs (PEP)	Interpretation	Mass deviation
37.94689	0.020	1127.2	2,023 (0.02)	Calcium adduct	-0.00005
21.98167	0.020	472.2	1,358 (0.02)	Sodium adduct	-0.00027
113.08411	-0.012	151.2	48 (0.02)	I/L (non-specific digestion)	0.00005
0.98433	0.800	73.6	335 (0.02)	Deamidation	0.00031
151.99699	1.842	34.2	125 (0.05)	CarbamidomethylDTT	0.00042
156.09987	-2.389	30.8	119 (0.05)	R (non-specific digestion)	-0.00124
128.09461	-2.915	29.9	144 (0.05)	K (non-specific digestion)	-0.00035
170.10512	-0.014	29.3	39 (0.05)	GI/L or AV (non-specific digestion)	-0.00040
104.09558	-13.108	20.2	6 (0.02)	False positive	
15.99421	-4.101	17.3	62 (0.05)	Oxidation	-0.00071
99.06819	0.671	15.0	43 (0.10)	V (non-specific digestion)	-0.00022
18.00828	-0.255	13.6	36 (0.10)	Dehydration/ pyro-glutamic acid	-0.00229
26.01532	2.581	10.5	67 (0.10)	Maybe acetaldehyde(+26)	-0.00033

Additive pseudo-modifications

Δm (Da)	Δt (min)	D-score	Pairs (PEP)	Interpretation	Mass deviation
43.96545	0.0717	207.2	194 (0.02)	Double sodium	0.00156
75.89452	0.0340	175.4	185 (0.02)	Double calcium	0.00063
59.93015	0.0206	169.1	278 (0.02)	Calcium + sodium	0.00127
38.93119	0.8715	26.7	53 (0.05)	Calcium + deamidation	0.00023
189.94359	1.3348	20.8	20 (0.05)	Calcium + carbamidomethylDTT	0.00008
22.96927	0.4303	18.2	3 (0.05)	Sodium + deamidation	0.00331

Identified peptides with detected modifications

Digestion mode	Variable modification in addition to oxidation	Number of spectra identified as modified/semi-tryptic peptides*
Full-specific	Calcium (D, E and peptide C-terminus)	142
	Sodium (D, E and peptide C-terminus)	205
	Deamidation (N and Q)	165
	CarbamidomethylDTT (C)	82
	Water loss (T, S D, and E at peptide N-terminus)	14
	Acetaldehyde (H, K and peptide N-termimus)	38
Semi-specific	None	218
Total		864

Total spectra: 4085 Identified by initial search: 1032

Peptide propagation among related spectral pairs

$PEP \le 0.02$		$PEP \le 0.05$		$\mathbf{PEP} \le 0.10$	
Modification	Spectra	Modification	Spectra	Modification	Spectra
Calcium adduct	522	CarbamidomethylDTT	49	V	10
Sodium adduct	378	R	15	Dehydration/Pyro-glu	19
I/L	16	К	13	Acetaldehyde(+26)	21
Deamidation	102	GI/L or AV	15	Oxidation – deamidation	10
Double sodium	66	Oxidation	2	R – oxidation	3
Double calcium	65	Other	N/A	Calcium – Oxidation	49
Calcium + sodium	88			Other	N/A
Other	N/A				
All	1,211	All	1,401	All	1,538

Running time: From reading the raw mass spectra to reporting potential modifications (mass and time shifts), the procedure took less than 4 min. The whole process of data analysis, including the restrictive database search and the peptide propagation, was completed within 20 min.

	Modifica	Davia			
Reading raw data	Reporting modifications	Reporting spectral pairs	Propagation & location	Database search	Total
0.3 min	3.4 min	1.4 min	5 min	9.7 min	19.8 min

MS-Alignment, Protein Prospector and other fragment information based methods can detect lowabundance modifications, but they are generally very slow.

The precursor information based DeltAMT is a powerful complement to them.

For MS-Alignment, the same database (less than 6 M amino acids) was searched as was used for the basic search by pFind, and one unanticipated modification was allowed per peptide. The result for Protein prospector is from (Chalkley et al., 2008, MCP, pp2386-1398), in which a database containing 46 proteins was searched.

Summary

• ???

- Deeper insights into mass spectral data
- Increasing spectral identification rates
- Experimental protocol optimization
- Discovery of biologically interesting or novel modifications
- Potentially useful for quantitation analysis

Software available

- pFind: <u>http://pfind.ict.ac.cn</u>
- pMatch: <u>http://pfind.ict.ac.cn/pmatch</u>
- pCluster: <u>http://pfind.ict.ac.cn/pcluster</u>

Acknowledgement

• Group members and collaborators

BPRC SIBS NIBS

- Support funds
 - NSFC(30900262),CAS(KGGX1-YW-13)
 - 973(2010CB912701),863(2007AA02Z315)

Thank you for your attention!

yfu@ict.ac.cn http://pfind.ict.ac.cn